Finite Gorenstein Representation Type Implies Simple Singularity
نویسندگان
چکیده
Let R be a commutative noetherian local ring and consider the set of isomorphism classes of indecomposable totally reflexive R-modules. We prove that if this set is finite, then either it has exactly one element, represented by the rank 1 free module, or R is Gorenstein and an isolated singularity (if R is complete, then it is even a simple hypersurface singularity). The crux of our proof is to argue that if the residue field has a totally reflexive cover, then R is Gorenstein or every totally reflexive R-module is free.
منابع مشابه
Orbifolds and Finite Group Representations
We present our recent understanding on resolutions of Gorenstein orbifolds, which involves the finite group representation theory. We concern only the quotient singularity of hypersurface type. The abelian group Ar (n) for A-type hypersurface quotient singularity of dimension n is introduced. For n = 4, the structure of Hilbert scheme of group orbits and crepant resolutions of Ar (4)-singularit...
متن کاملSe p 20 01 On Gorenstein log del Pezzo surfaces ∗
In this paper, we first present the complete list of the singularity types of the Picard number one Gorenstein log del Pezzo surface and the number of the isomorphism classes with the given singularity type. Then we give out a method to find out all singularity types of Gorenstein log del Pezzo surface. As an application, we present the complete list of the Dynkin type of the Picard number two ...
متن کاملGorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کاملAn Auslander-type Result for Gorenstein-projective Modules
An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms, indecomposable finitely generated Gorenstein-projective A-modules. We prove that for a Gorenstein artin algebra, it is CM-finite if and only if every its Gorenstein-projective module is a direct sum of finitely generated Gorenstein-projective modules. This is an analogue of Auslander’s theorem on alg...
متن کاملUniversal abelian covers of superisolated singularities
The topology of a normal surface singularity does not determine the analytical invariants of its equisingularity class, but recent partial results indicated that this should be true under two restrictions, a topological one, that the link of the singularity is a rational homology sphere, and an analytical one, that the singularity is Q-Gorenstein. Neumann and Wahl conjectured that the singulari...
متن کامل